Chapter 16 )
Teaching Computational Thinking Gzt
with Electronic Textiles: Modeling

Iterative Practices and Supporting

Personal Projects in Exploring Computer
Science

Deborah A. Fields, Debora Lui and Yasmin B. Kafai

Abstract Iterative design is an important aspect of computational thinking in which
students learn to face challenges and persevere in fixing them. Yet we know little of
how school teachers can support students in using iterative practices. In this chapter,
we consider the teaching practices of two experienced computer science teachers
who implemented a new 8-week long unit on making electronic textiles in their
classrooms. Electronic textiles are sewn, programmable circuits with sensors and
actuators on personal artifacts that provide various opportunities to learn through
mistakes. Through analyses of observations and interviews with students and teach-
ers who implemented the unit, we identified several teaching practices that supported
values of iteration, revision, and working through mistakes. These included teachers
modeling their own processes and mistakes in making projects, teachers model-
ing students’ mistakes to the wider class, and supporting personalized projects that
resulted in unique “bugs” or challenges for each student. After sharing examples of
these practices, we consider student and teacher reflections on the ways that mistakes
and iteration supported student learning.

Keywords Computational thinking - Iteration - Computer science education -
Electronic textiles - Teaching practices

D. A. Fields ()
Utah State University, 2830 Old Main Hill, Logan, UT 84322, USA
e-mail: deborah.fields @usu.edu

D. Lui - Y. B. Kafai
University of Pennsylvania, 3700 Walnut Street, Philadelphia, PA 19104, USA
e-mail: deblui @upenn.edu

Y. B. Kafai
e-mail: kafai @upenn.edu

© The Author(s) 2019 279
S.-C. Kong and H. Abelson (eds.), Computational Thinking Education,
https://doi.org/10.1007/978-981-13-6528-7_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6528-7_16&domain=pdf
mailto:deborah.fields@usu.edu
mailto:deblui@upenn.edu
mailto:kafai@upenn.edu
https://doi.org/10.1007/978-981-13-6528-7_16

280 D. A. Fields et al.

16.1 Introduction

The introduction of computational thinking into the K-12 curriculum has become a
global effort. Computational thinking (CT) was defined by Wing (2006) as a way of
approaching and conceptualizing problems, which draws upon concepts fundamental
to computer science such as abstraction, recursion, or algorithms. Early work in this
area primarily focused on defining computational thinking, specifically its cognitive
and educational implications as well as highlighting existing contexts for teaching
computational thinking (e.g., NRC, 2011). While much subsequent work has focused
on the development of different environments and tools for CT, as well as curricular
initiatives in the K-12 environment, there is growing need for more empirical work
situated in actual classroom environments (Grover & Pea, 2013).

Iterative design is an important aspect of computational thinking that involves
engaging in an adaptive process of design and implementation where students learn
to face challenges and persevere in fixing them (Brennan & Resnick, 2012). Yet
one glaring absence in the work on iteration in computational thinking is a lack of
understanding exactly how teachers can support such CT practices in their class-
rooms (Barr & Stephenson, 2011). Thus far, most studies focused on CT tools and
environments had researchers themselves implement projects or were situated in out-
of-school contexts where youth voluntarily engaged on topics of their own choosing
(e.g., Grover, Pea, & Cooper, 2015; Denner, Werner, & Ortiz, 2012). While these
studies provide important insights about the feasibility of engaging students in CT,
they could not address the critical issue of how computer science teachers, dealing
with large class sizes and curricular restrictions, can integrate CT into their class-
room activities by connecting technology, content, and pedagogy (Mishra & Kohler,
2006).

In this paper, we focus on how two high school teachers supported iterative prac-
tice as a core CT practice during their implementation of an eight-week (~40 h)
electronic textiles unit within their classrooms during the year-long Exploring Com-
puter Science (ECS) curriculum (Goode, Margolis, & Chapman, 2014). Electronic
textiles (e-textiles), or fabric-based computing, incorporate basic electronics such as
microcontrollers, actuators and sensors with textiles, conductive thread and similar
“soft” materials (see Buechley, Peppler, Eisenberg, & Kafai, 2013a). Two researchers
observed the daily implementation of the curriculum, documenting classroom activi-
ties and interactions in extensive field notes, video recordings and photos of students’
work. The following research question guided our analysis “What kind of teaching
strategies did the teachers employ to support students’ iterative practice during the
e-textiles unit?” Our discussion focuses on the teachers’ modeling and personaliza-
tion strategies to make iteration accessible in students’ work, particularly through
classroom practices that support iteration.



16 Teaching Computational Thinking with Electronic Textiles ... 281

16.2 Background

While computational thinking is related to the creation of code, it is important to
note how understanding programming is not the same thing as CT itself (Wing,
2006). As Wing (2006) states, “[t]hinking like a computer scientist means more than
being able to program a computer.” In other words, it involves particular kinds of
approaches to problems that exist in the world (not just on the screen). In terms
of teaching programming, considerable research has focused on content, drawing
attention to the ways in which particular programming concepts and practices, such
as loops and debugging, can be taught within classrooms (e.g., Soloway & Spohrer,
1989). Here, research is driven by the need to recognize what concepts and practices
are difficult to learn and how to scaffold students’ learning. More recent efforts have
focused on context, highlighting different kinds of projects and applications in which
learning programming can occur, whether in game design, robotics, creating apps, or
constructing wearables such as e-textiles (e.g., Kafai & Burke, 2014). Here, efforts
are driven by the recognition that teaching and learning programming need to be
contextualized in ways that engage students’ existing interests.

Because teaching computational thinking is newer than teaching programming,
research has generally focused more broadly on conceptual or hypothetical contexts
(Grover & Pea, 2013). One goal has been to define the actual nature of computa-
tional thinking in terms of cognition and its relationship to existing disciplines such
as mathematics and engineering (NRC, 2011). Other work has focused on develop-
ing CT-focused curricula for K-12 contexts such as AP Computer Science Principles
(e.g., Guzdial, 2016), Exploring Computer Science (Margolis & Goode, 2016), or
in science and mathematics classes (e.g., Tofel-Grehl et al., 2017; Weintrop et al.,
2016). Finally, researchers have identified the importance of developing particular
environments and tools for supporting CT, often overlapping with those that teach
programming (e.g., graphical programming interfaces, digital and tangible compu-
tational construction kits).

While all this work focuses on the potential or need to bring CT into educa-
tion, what is missing are studies of how teachers actually implement these ideas
in their classrooms and the particular ways in which computational thinking tools,
content, and pedagogy intersect. Approaching this effort, Mishra and Kohler (2006)
described technological pedagogical content knowledge, relating education with dig-
ital technology more broadly, but not specifically with computing or computer sci-
ence. Instead, deeper understanding on computer science teaching is still in early
stages compared to other disciplines such as math and sciences. For the most part,
research on actual computer science teaching, with a focus on CT, has focused on
pre-service teachers and ways to integrate CT in classrooms (e.g., Yadav, Mayfield,
Zhou, Hambrusch, & Korb, 2014). Case studies have been developed to examine
the strategies used by teachers to address CT in their classrooms (Griffin, Pirman, &
Gray, 2016). The area that overlaps most with CT is focused on algorithmic thinking
(Ragonis, 2012). A few scholars such as Margolis, Goode, and Ryoo (2015) have



282 D. A. Fields et al.

studied CS teachers’ pedagogical practices, such as inquiry-based strategies, but not
specifically how pedagogy connected with CT or CS concepts.

Our work contributes to this newly emerging body of computational pedagogical
content knowledge by examining how experienced computer science teachers teach
CT using electronic textiles. Early studies of e-textiles focused on broadening par-
ticipation in areas of computing and engineering by reshaping students’ perspectives
of and interests in those fields (e.g., Buchholz, Shively, Peppler, & Wohlwend, 2014;
Kafai, Fields, & Searle, 2014a). One study (Kafai et al., 2014a) identified several CT
concepts, practices and perspectives that students learned while making an e-textiles
human sensor project—a precursor to one of the projects in the curriculum discussed
in this paper. For example, this project included concepts such as sequencing, since
students had to properly sequence code in order to coordinate behavior of the sensors
and lights in their project, as well as practices like remixing and reusing code, since
students had to modify a sample program in order to accommodate different circuit
diagrams, sensor types, and intended behaviors. However, while that study identified
ways that making e-textiles can support CT, the unit was taught by researchers and
pedagogy was not a focus of the study.

In this chapter, we focus on how e-textiles and pedagogy can be used to support
the essential CT practice of iterative design, looking at it as a core computational
thinking practice alongside pedagogy. There are many areas of computational think-
ing to address, so why did we choose iterative design? This choice stems from an
analysis of teaching practices that supported equity and broadening participation in
two ECS classrooms that piloted an e-textile unit (Fields, Kafai, Nakajima, Goode,
& Margolis, 2018a). We noted in our analysis that teachers’ support for iteration
happened at multiple levels: whole class modeling, individual student work, col-
laborative student work, and in the design of the classroom learning environment
itself. Thus iterative design stood out as an area of equitable teaching practice that
simultaneously broadened participation in computer science while introducing and
reinforcing an important practice of computational thinking.

Within the world of software design, iteration—or the process of continual repe-
tition and revision—is essential for the completion and refinement of different algo-
rithms and programs and is therefore considered a key conceptual idea within CT,
alongside conditional logic, abstraction, and algorithms (Brennan & Resnick, 2012;
Grover & Pea, 2013; Wing, 2006). However, the act of iteration itself is also thought
of as an important practice within CT in and of itself, when actually engaging with
computational problems and projects. As outlined by Brennan and Resnick (2012),
iterative design is defined as the cycle of prototyping, testing, and revision, that
requires students to engage in a continually “adaptive process,” throughout the course
of creating a computational artifact, where one’s goals “might change in response
to approaching a solution in small steps” (p. 7). Iterative design is also a key prac-
tice highlighted in new secondary school computer science curricula such as the AP
Computer Science Principles course, which reinforces the importance of iterative
software development as “essential knowledge” in many different learning objec-
tives in the course (e.g., CollegeBoard, 2016: principles EK 1.1.1B, 3.1.1A, 4.1.1A,
4.1.1D, 4.1.2G, 5.1.2A, 5.1.3C, 5.5.1J). From this perspective, iteration is not only a



16 Teaching Computational Thinking with Electronic Textiles ... 283

concept that can be applied into the body of a computer program itself, but can also
refer to the purposefully incremental process of creating a computational artifact.
Here, it is not only the act of iteration that matters, but an awareness and explicit
acknowledgment of its importance in tackling problems in a systematic way—basi-
cally, learning how to think in an iterative way about real-world issues.

Iterative practices are also important within the field of engineering where they
involve engagement with trial-and-error processes, along with revision and refine-
ment of ideas over time (Barr & Stephenson, 2011; Lee et al., 2011). Within engineer-
ing education, these processes of iteration and revisions are more formally structured
into classroom practice through the model of the engineering design process, which
highlights the steps of prototyping, testing, and redesign (Tayal, 2013). From this
perspective, the practice of iterative design should be considered something to be
supported within both CT curricula and contexts. However, because CT-focused cur-
ricula and pedagogy are newer, there remains a critical need to highlight how iterative
design as a practice can be supported through pedagogical interventions.

Using e-textiles affords different opportunities to observe teaching strategies to
support iterative design because they (1) integrate CT within both programming
(i.e., software design) and engineering (i.e., circuit design, physical craft) and can
illustrate how teachers make connections between these contexts; (2) are hybrid
nature in nature (i.e., as textual code on the screen and as physical circuits on the
textile) and can make visible how teachers navigate between different modalities;
and (3) allow for creative expression and aesthetics through personalized projects
and can demonstrate how teachers respond to and are supportive of distinct student
interests. Focusing on two classrooms from the Exploring Computer Science (ECS)
program (Goode et al., 2014), we examined what strategies these experienced ECS
teachers used in their implementation of the new e-textiles curriculum unit (Fields,
Lui, & Kafai, 2017; Fields et al., 2018a, b). In this chapter we focus on strategies
that support iteration as a key computational thinking process that can be difficult to
implement in classrooms.

16.3 Methods

16.3.1 Context

Our e-textiles unit is embedded within the Exploring Computer Science (ECS) ini-
tiative, which comprises a one-year introductory computer science curriculum with
a 2-year professional development sequence. The curriculum consists of six units:
Human—Computer Interaction, Problem-Solving, Web Design, Introduction to Pro-
gramming (Scratch), Computing and Data Analysis, and Robotics (Lego Mind-
storms) (Goode & Margolis, 2011). The instructional design of the curriculum adopts
inquiry-based teaching practices so that all students are given opportunities to explore
and design investigations, think critically and test solutions, and solve real problems.



284 D. A. Fields et al.

ECS has successfully increased diversity to representative rates in Los Angeles and
has subsequently scaled nationwide to other large urban districts and regions, now
with over 500 teachers nationwide.

Within this successfully implemented, inquiry-based curriculum, we noted an
opportunity to broaden the range of computer science activities by including e-
textiles. The curriculum unit was co-developed by e-textiles and ECS experts to
combine best practices of teaching and crafting e-textiles based on a constructionist
philosophy alongside ECS principles, style, and writing. The curriculum contains
big ideas and recommended lesson plans, with much room for teachers to interpret
and bring in their own style. A final version of the curriculum can be found at http://
exploringcs.org/e-textiles.

The ECS e-textiles unit implemented for this study consisted of six projects, each
increasing in difficulty and creative freedom, that introduced concepts and skills
including conductive sewing and sensor design; simple, parallel, and computational
circuits (independently programmable); programming sequences, loops, condition-
als, and Boolean logic; and data from various inputs (switches and sensors). The
projects were as follows: (1) a paper-card using a simple circuit, (2) a “stitch-card”
with one LED sewn as a simple circuit, (3) a wristband with three LEDs in parallel,
(4) a felt project using a preprogrammed LilyTiny microcontroller and 3—4 LEDs,
(5) a classroom-wide mural project where pairs of students created portions that each
incorporated two switches to computationally create four lighting patterns, and (6)
a “human sensor” project that used two aluminum foil conductive patches that when
squeezed generated a range of data to be used as conditions for lighting effects. Stu-
dent artifacts included stuffed animals, paper cranes, and wearable shirts or hoodies,
all augmented with the sensors and actuators.

In Spring 2016 two high school teachers, each with 8—12 years of computer
science classroom teaching experience, piloted the e-textiles unit in their ECS classes
in two large public secondary schools in a major city in the western United States.
Both schools had socioeconomically disadvantaged students (59-89% of students
at each school) with ethnically non-dominant populations (i.e., the majority of the
students at each school include African American, Hispanic/Latino, or southeast
Asian students).

16.3.2 Data Collection and Analysis

The study is part of a larger design-based implementation research study (Penuel,
Fishman, Cheng, & Sabelli, 2011) where the goal is to develop and revise an e-textiles
unit over the course of 3 years, attend to problems of practice in the classroom,
develop better theories of pedagogy related to making and computing, and support
classrooms in sustainable changes as they bring making to computer science. This
paper reports on the first year of the study, where two teachers implemented the cur-
riculum for the first time. Two researchers gathered data focused on teacher practice
in the classroom, visiting each class equally, four days a week (about 8 weeks, with


http://exploringcs.org/e-textiles

16 Teaching Computational Thinking with Electronic Textiles ... 285

interruptions from holidays, testing, and other school obligations). The researchers
documented teaching with detailed field notes, in-class video and audio recordings,
and pictures/videos of student work, supplemented by three interviews with the teach-
ers before, during, and after the unit, and brief focus group interviews with students
at the end of the unit.

The analysis of field notes involved constant comparative analysis (see Charmaz,
2011) to (1) identify computational thinking practices exhibited during the e-textiles
unit, and then (2) compare these with the larger corpus of computational thinking
practices identified in the AP Computer Science Principles curriculum (see Fields
et al., 2017). Through this process, iteration stood out a key area of learning. Then
the team re-coded the data to find all of the teaching practices in this area. Finally, the
team compared findings from observational data with the interviews from teachers
and students to see whether these practices came up from participants’ perspectives
and to understand these two areas in greater depth.

16.4 Findings: Contexts for Iteration: Creating
a Classroom Culture Valuing Mistakes and Revisions

Within the e-textiles unit, students engaged with iteration at many stages: prototyping,
testing, and revising designs while tackling bugs and problems that arose in the
process. This was evident through the changes that students made in their projects,
including improvements in circuit diagrams, changes in and expansions of code, and
visible alterations in the physical projects themselves. In fact, iterating on project
ideas and implementation was one of the most frequent things we coded across
the data. Earlier work in e-textiles has documented similar changes in student design
(Fields, Kafai, & Searle, 2012; Kafai etal.,2014b). The focus of our findings here is on
how the teachers supported a culture of iteration and refinement in their classrooms.
What practices did they use to create an environment where sharing about mistakes
and seeing them as a means of learning was valued? Furthermore, how did this culture
support students’ awareness and acknowledgement of iteration as a key perspective
that could be used in service of creating a computational artifact? Below we outline
three main areas of teaching practices that helped to develop a classroom culture
of iteration: teachers’ modeling of their own mistakes and teachers’ modeling of
students’ mistakes, all with a focus on students’ personal designs.

16.4.1 Teachers Modeling Their Own Mistakes

One key teaching practice involved teachers promoting their own mistakes, errors,
and less-than-perfect projects in front of the classroom. When introducing a new
project, for instance, Ben or Angela would show their own sample creations (which



286 D. A. Fields et al.

were made during teacher professional development for the unit). This not only
served to give students ideas but also allowed the teachers to showcase their own
experience of revision and iteration, and coach students on tips for dealing with this
process. Consider the way Angela shared her work in her introduction to the LilyTiny
project in class, as highlighted within our field notes

So let me tell you a little story. When I was working on one of my projects, I didn’t think
I needed a plan. “I’ll just do this,” I thought.” Angela went on to explain that she worked
for two days on her project and then eventually had to take most of it apart because it didn’t
work. ‘If you don’t plan, it’s going to take you more time to take things out and fix it than
it would to do it right the first time. So you’re going to draw it all out, and you’ll use that
blueprint and then you’ll have your little map. (160405 field notes').

Here Angelatold a self-deprecating story of her process of creating her project. She
highlighted how not having a predetermined plan for her e-textiles project—specifi-
cally, mapping out circuitry connections beforehand—meant that she ended up mak-
ing numerous mistakes while crafting and eventually had to redo her entire project.
She framed the circuit diagram as a way of creating a well-thought out plan for imple-
mentation, a skill which is helpful not only with regard to crafting but also within
the context of creating a complex computational artifact that encompasses multiple
modes (i.e., sewing, circuitry, programming). It serves as both a time-saving measure
to prevent costly mistake fixing, but also to help students structure their construction
time more efficiently. Note that the knowledge Angela shared was very pragmatic;
she did not ask students to trust her on her authority alone (i.e., “have a plan because
I said so0”) but rather because of her personal experience.

The other teacher, Ben, similarly highlighted his own process of dealing with
mistakes when using his own project to aid in teaching. During a programming
lesson, Ben shared his personal project code as an exemplar and sample for students
to remix while using a preassembled e-textiles circuit board (the LilyPad Protosnap)

Ben: As an introduction, “everyone please open up my.pdf called Function Code. And I
want pairs to inspect the code and discuss what the code is going to do.” Two students
who were absent the prior day pointed to the switch and said that Number 2 should turn
on... They seemed confused. At that moment, Ben realized his error—the code that he
shared was something he wrote up for his own (extra) project that he is making that will
involve switches and buzzers —his variables refer to the wrong ports on the Protosnap
microcontroller. (160524 field notes).

Ben went on to explain this mistake to the class: “My apologies. I was messing
around with the buzzer last night [on my own project],” and then explained how the
connections were different from the LilyPad Protosnap boards students were using.
However, rather than starting over on the task, Ben highlighted his error to students,
inviting them to participate in how it could be fixed so that the code matched with
the boards (160524 field notes).

« o

'We use double quotation marks (“ ) to show exact words of participations and single quotation
marks (° ’) to show paraphrased words that occur most often in field notes where conversations
were typed in the moment rather than audio recorded and transcribed.



16 Teaching Computational Thinking with Electronic Textiles ... 287

In modeling their own imperfect processes of creation and addressing their mis-
takes, the teachers, Angela and Ben, thereby promoted a classroom culture of itera-
tive practice, valuing process over product. While everyone was encouraged to make
full, working projects, the teachers stressed that the actual experience of creation and
learning would most likely include moments of failure, and subsequent revisions and
iterations. Students were encouraged to think that it was okay not to be perfect the
first time (or the second, third, fourth) they did something. Perfection, in these cases,
could prevent students from moving forward in their learning.

16.4.2 Teachers Modeling Students’ Mistakes

Just as the teachers showed their own projects and processes in front of the entire
class, they also showcased students’ challenges, mistakes, and in-process projects in
order to promote the practice of iteration and revision. For instance, Angela added
a journal question after the completion of the wristband activity that solicited chal-
lenges that students had faced: “Think about this week’s project, what was the biggest
challenge? If you had no challenges, what tips do you have for people who may be
struggling?” (160422 field notes). After students had some minutes to think and to
write, she invited various students to share out what they had written. Numerous
students shared advice such as “plan more,” echoing Angela’s lesson from above
regarding the importance of creating clear circuit diagrams as blueprints in help in
constructing a functional e-textile artifact. Students also mentioned other issues that
spanned across the multiple domains of e-textiles work. For instance, another student
brought up the polarity issue of “mixing up the positive and negative” when trying
to create a working sewn circuit. In response, Angela invited students to share sug-
gestions on how to avoid this issue; they suggested curling or twisting the positive
and negative sides of the LED wires to look different, developing symbolic means
to identify polarity.

Another way that the teachers modeled students’ mistakes was through reflections
between projects. For instance, after the wristband (project #3) was complete, Ben
provided some constructive thoughts to his class

Ben: ‘I want to talk about the [project] we just did. Because those bracelets
look awesome, they look fantastic and you should be proud of yourselves.
There were a couple of things that I saw that you could improve ... I saw
some sloppy stitching. Meaning that they were more than an inch. Some
of them were not pulled completely tight. I know that some of you might
not want to do the work of going in and out and in and out. But what might
be a concern?’

Student: ‘It would get caught in something.’

Ben: “Yes, and concise means a little tighter.” (160418, field notes)

In this example, Ben went on to coach students about two other problems he saw
in student work on the wristbands. Each time, he presented a problem then asked



288 D. A. Fields et al.

students why they thought it might be an issue, allowing the students to share their
expertise on these problems. In this way Ben also supported iterative design between
projects, not just within a project. This suggests that having a series of projects
provided more opportunities for iterative practices than just having a single project.
Students could improve their techniques across projects by recalling this ongoing cat-
alogue of mistakes and solutions, and essentially acting as problem-solving resources
for one another. Beyond merely supporting iterative activity, the teaching strategies
described above pushed students to explicitly consider how iterative thinking was
an essential part of computational work. By asking students to continually reflect
upon the challenges and issues they faced, both Angela and Ben were able to high-
light the inherently adaptive, trial and error nature of creating a functional e-textile
artifact. Students learned not only how to recognize potential problems, but how to
continually address these through more effective planning and ongoing implemen-
tation. From this standpoint, students became more cognizant of the powerful role
that iteration could play in developing their own increasingly complex projects over
time.

16.4.3 Supporting Personalized Design to Facilitate Iterative
Practice

What inspired these practices of revealing and sharing mistakes, thus reinforcing
process over product, and supporting iteration as an activity and a perspective? One
thing that both teachers noted in their interviews with us was that doing the projects
themselves helped them understand what students were going through. As Angela
expressed, “A lot of times, we don’t do what we’re asking kids to do. It was great
doing the projects in the [professional development sessions] because it helped me
anticipate questions that might come up in class and think of ways to address them”
(160609, interview). Creating projects helped the teachers themselves to reflect on
their own processes of making them (including their own experience of trial and
error, revision, and iteration) and provided a base of stories and examples to share
with students. Thus one of the most important underlying aspects of the classroom
culture was the teachers’ emphasis on their own as well as students’ personalized
projects.

How did the teachers’ promotion of personalized projects promote iterative think-
ing and design? Students were tasked to create projects within predetermined con-
straints throughout the unit (e.g., a light-up wristband, an interactive felt banner).
However, both Angela and Ben also actively encouraged students to develop their
own personal ideas through these assignments. This can be illustrated, in particular,
through the students’ final human sensor project, where a fabric object was modified
to include four to five LEDs, which could be triggered by readings from conductive
foil patches into at least four customized light pattern functions. From the start, the
teachers actively encouraged personalization by allowing students to either bring or



16 Teaching Computational Thinking with Electronic Textiles ... 289

Fig. 16.1 Human sensor projects by students (top to bottom): Bridget’s jellyfish (top and bottom
views), Mateo’s Viva Mexico poncho (front and back), and Peter’s dog harness (top and bottom)

create their own personal objects for modification. This ranged from a “Viva Mex-
ico” poncho, to a dog walking harness, to a stuffed jellyfish made of fabric (see
Fig. 16.1). Further, teachers encouraged the students to customize the desired func-
tionality based on their own interests and desires. For instance, some projects had
a practical purpose (the walking harness that lit up when it was actually worn by
a dog), while others’ projects were more whimsical (the jellyfish, whose tentacles
glowed when triggered through play and interaction).

By pushing this personalization within the context of the given project constraints,
teachers inherently led students through an iterative process. One way this occurred
was in developing unique circuit diagrams for the diverse objects. For instance,
Angela had to assist students in thinking through the complex spatial dimensions



290 D. A. Fields et al.

translating a two-dimensional blueprint to many different kinds of three-dimensional
objects, for instance, a hat with an inside and outside surface or a stuffed animal
with multiple overlapping surfaces. Another important context of iteration was in
programming their objects. Students were all given basic “starter code” that included
the functions for activating the conductive patches and a conditional statement with
different outputs based on sensor readings. To match individual projects, students
were required to make multiple changes. Ben, for instance, worked with his entire
class to test how the different conductive patch sizes and users would shift the reading
ranges that would need to be included within students’ different programs.

Notably, this emphasis on original design ensured feelings of personal ownership
over student projects, which in turn led to a willingness to persevere through mistakes
and bugs. Because each project was distinct, students dealt with unique sets of chal-
lenges and issues. Troubleshooting therefore became a process of knowing how to
isolate different problems, iteratively moving through different potential causes and
solutions. While some students did become discouraged by this process, for others,
the personal commitment to the project led them to push through the process, even
beyond the teachers themselves, as demonstrated by the example from an observation
below

Ethan’s project was finished but a glitch in the code caused two of the LEDs not to turn on in
two of the four lighting pattern functions. The teacher and the researcher worked to help Ethan
troubleshoot the project; Ethan expressed great frustration. Two other students came to try to
assist. One said that she had a problem with delays in her code, so Ethan tried many different
types of code fixes (added delays, copied and pasted code into a new function, re-typed the
problematic function). No one could figure out the underlying problem. Unbothered at this
point, Ethan finished by rewriting the code for the two problematic functions, designing
simpler lighting functions, and it worked (160531, field notes).

From this standpoint, encouraging personalization not only creates natural oppor-
tunities for iterative design and troubleshooting, but also has the potential of motivat-
ing students to continually engage with and push through these processes. Consider-
ing that incremental and iterative work is so essential to computational thinking, the
personalization promoted by the teachers and afforded by the medium of e-textiles
therefore further enhances iteration.

16.5 Discussion

Our paper contributes to the emerging body of research on teaching practices of
computational thinking that focused not just on programming but also on physical
crafting and electronics. In our analysis we focused on a key aspect of computational
thinking—iterative practices—that teachers addressed within the electronic textiles
curriculum unit. The teachers illustrated how to support CT with personalized project
creation involving large numbers of students (24 and 35), the restricted time con-
straints of class periods, and the temporary nature of classroom-based makerspaces
where materials had to be put away every day. In the following sections, we dis-



16 Teaching Computational Thinking with Electronic Textiles ... 291

cuss further aspects of teaching computational thinking that we saw instantiated in
our study with the goal to make teaching CT more culturally relevant and equitable
(Goode et al., 2014).

First, we draw attention to how teachers engaged with iterative practices: by
not only modeling publicly their own mistakes but also those of their students so
that others could learn from them. These combined practices created a classroom
culture where process—improving, fixing, iterating on designs—was situated in the
context of students’ personal projects addressing their individual concerns while
also sharing them with others. This approach to teaching computational thinking
made iterative practices public and part of the larger classroom community while
also distributing responsibilities. Through this approach teachers validated “process”
alongside “product”, highlighting iteration not only as an activity, but as a perspective
which can help organize students’ engagement with computational problems. In more
recent efforts we are working to further enhance this approach by having students
report and reflect on their mistakes in portfolios (see Lui, Jayathirtha, Fields, Shaw,
& Kafai, 2018; Lui et al., in press; Fields, Shaw, & Kafai, 2018). Our plan is to
have students document the challenges and revisions that come up in their iterative
design processes by taking pictures of mistakes, marking errors in versions of code,
or showing changes in the development of their circuit diagrams. This will add a
formal element of reflection on iterative design to the pedagogy that the teachers
have already implemented in their classrooms.

Second, we point out that by making computational thinking public and part of
the larger classroom culture, the teachers also addressed another critical element
relevant to supporting equitable and inquiry-based teaching: creating an audience
for e-textiles projects that highlights their usability. For instance, by sharing their
projects and discussing multiple users of their projects (including one’s spouse) the
teachers brought out the broader usability of projects: students’ projects as well as
their teachers’ projects could have relevance outside the classroom. These features
are important because audience and participation are key areas of supporting design
though they have only recently been recognized as relevant in the area of computa-
tional thinking by highlighting computational participation (Kafai & Burke, 2014).
Other valuable strategies such as validating student expertise and supporting personal
designs during class discussion to engage students with computational thinking have
been addressed elsewhere (see Fields et al., 2018a, b).

By themselves the strategies discussed above are nothing new in having been iden-
tified in much exemplary science and mathematics teaching (see Ball, Thames, &
Phelps, 2008). However, it is the application of these teaching strategies to computa-
tional thinking that presents a unique and promising approach to develop this emerg-
ing field of pedagogy in computer science education. We see them as an example of
computational pedagogical content knowledge, or the unique knowledge that teach-
ers need to develop in order to embed computational thinking in their instructional
practice to support student learning. This chapter provided salient classroom exam-
ples of what teaching iterative practices in the context of personal student projects
can look like.



292 D. A. Fields et al.

References

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it
special? Journal of Teacher Education, 59(5), 389-407.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and
what is the role of the computer science education community? ACM Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the devel-
opment of computational thinking. Annual Meeting of the American Educational Research Asso-
ciation, Vancouver, BC, Canada.

Buchholz, B., Shively, K., Peppler, K., & Wohlwend, K. (2014). Hands on, hands off: Gendered
access in sewing and electronics practices. Mind, Culture, and Activity, 21(4), 1-20.

Buechley, L., Peppler, K., Eisenberg, M., & Kafai, Y. (Eds.). (2013a). Textile messages: Dispatches
from the world of e-textiles and education. New York, NY: Peter Lang.

Charmaz, K. (2011). Grounded theory methods in social justice research. The Sage Handbook of
Qualitative Research, 4, 359-380.

CollegeBoard. (2016). AP computer science principles: Course and exam description effective
fall 2016. CollegeBoard: New York, NY. Retrieved from https://secure-media.collegeboard.org/
digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can
they be used to measure understanding of computer science concepts? Computers & Education,
58, 240-249.

Fields, D. A., Kafai, Y. B., Nakajima, T. M., Goode, J., & Margolis, J. (2018a). Putting making
into high school computers science classrooms: Promoting equity in teaching and learning with
electronic textiles in Exploring Computer Science. Equity, Excellence, and Education, 51(1),
21-35.

Fields, D. A., Shaw, M. S., & Kafai, Y. B. (2018b). Personal learning journeys: Reflective portfolios
as “objects-to-learn-with” in an e-textiles high school class In V. Dagiene & E. Jastué (Eds.),
Constructionism 2018: Constructionism, Computational Thinking and Educational Innovation:
Conference Proceedings (pp. 213-223). Vilnius, Lithuania. http://www.constructionism2018.{sf.
vu.lt/proceedings.

Fields, D. A., Kafai, Y. B., & Searle, K. A. (2012). Functional aesthetics for learning: Creative
tensions in youth e-textiles designs. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann
(Eds.), The Future of Learning: Proceedings of the 10th International Conference of the Learning
Sciences (ICLS 2012), Full Papers (Vol. 1, pp. 196-203). Sydney, NSW, Australia: International
Society of the Learning Sciences.

Fields, D. A., Lui, D., & Kafai, Y. B. (2017). Teaching computational thinking with electronic
textiles: High school teachers’ contextualizing strategies in Exploring Computer Science. In S.
C. Kong, J. Sheldon, & R. K. Y. Li (Eds.), Conference Proceedings of International Conference
on Computational Thinking Education 2017 (pp. 67-72). Hong Kong: The Education University
of Hong Kong.

Goode, J., & Margolis, J. (2011). Exploring Computer Science: A case study of school reform.
ACM Transactions on Computing Education, 11(2), 12.

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is not enough: The educational theory
and research foundation of the Exploring Computer Science professional development model. In
Proceedings of SIGCSE ’14 (pp. 493-498). New York, NY: ACM.

Griffin, J., Pirman, T., & Gray, B. (2016). Two teachers, two perspectives on CS principles. In
Proceedings of SIGCSE ’16 (pp. 461-466). New York, NY: ACM.

Grover, S., & Pea, R. (2013). Computational thinking in K—12: A review of the state of the field.
Educational Researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer
science course for middle school students. Computer Science Education, 25(2), 199-237.

Guzdial, M. (2016). Drumming up support for AP CS principles. Communications of the ACM,
59(2), 12-13.


https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://www.constructionism2018.fsf.vu.lt/proceedings

16 Teaching Computational Thinking with Electronic Textiles ... 293

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming.
Cambridge, MA: MIT Press.

Kafai, Y. B., Fields, D. A., & Searle, K. A. (2014a). Electronic textiles as disruptive designs:
Supporting and challenging maker activities in schools. Harvard Educational Review, 84(4),
532-556.

Kafai, Y. B., Lee, E., Searle, K. S., Fields, D. A., Kaplan, E., & Lui, D. (2014b). A crafts-oriented
approach to computing in high school. ACM Transactions of Computing Education, 14(1), 1-20.

Lee, L., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... Werner, L. (2011). Computa-
tional thinking for youth in practice. ACM Inroads, 2(1), 32-317.

Lui, D, Jayathirtha, G., Fields, D. A., Shaw, M., & Kafai, Y. B. (2018). Design considerations for
capturing computational thinking practices in high school students’ electronic textile portfolios.
In Proceedings of the International Conference of the Learning Sciences. London, UK.

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D. A., & Jayathirtha, G. (in press). Commu-
nicating computational concepts and practices within high school students’ portfolios of making
electronic textiles. Interactive Learning Environments.

Margolis, J., & Goode, J. (2016). Ten lessons for CS for all. ACM Inroads, 7(4), 58—66.

Margolis, J., Goode, J., & Ryoo, J. (2015). Democratizing computer science knowledge. Educational
Leadership, 72(4), 48-53.

Mishra, P., & Kohler, M. J. (2006). Technological pedagogical content knowledge: A new framework
for teacher knowledge. Teachers College Record, 108(6), 1017-1054.

National Research Council. (2011). Report of a workshop on pedagogical aspects of computational
thinking. Washington, DC: National Academy Press.

Penuel, W. R., Fishman, B. J., Cheng, B., & Sabelli, N. (2011). Organizing research and develop-
ment at the intersection of learning, implementation, and design. Educational Researcher, 40(7),
331-337.

Ragonis, N. (2012). Integrating the teaching of algorithmic patterns into computer science teacher
preparation programs. In Proceedings of ITiCSE "12 (pp. 339-344). New York, NY: ACM.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale, NJ:
Lawrence Erlbaum.

Tayal, S. P. (2013). Engineering design process. International Journal of Computer Science and
Communication Engineering, 1-5.

Tofel-Grehl, C., Fields, D. A., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, V. (2017).
Electrifying engagement in middle school science class: Improving student interest through e-
textiles. Journal of Science Education and Technology, 26(4), 406-417.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49, 33-35.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking
in elementary and secondary teacher education. ACM Transactions on Computing Education,
14(1), 1-16.



